Distinct Endocytic Pathways Control the Rate and Extent of Synaptic Vesicle Protein Recycling

نویسندگان

  • Susan M. Voglmaier
  • Kaiwen Kam
  • Hua Yang
  • Doris L. Fortin
  • Zhaolin Hua
  • Roger A. Nicoll
  • Robert H. Edwards
چکیده

Synaptic vesicles have been proposed to form through two mechanisms: one directly from the plasma membrane involving clathrin-dependent endocytosis and the adaptor protein AP2, and the other from an endosomal intermediate mediated by the adaptor AP3. However, the relative role of these two mechanisms in synaptic vesicle recycling has remained unclear. We now find that vesicular glutamate transporter VGLUT1 interacts directly with endophilin, a component of the clathrin-dependent endocytic machinery. In the absence of its interaction with endophilin, VGLUT1 recycles more slowly during prolonged, high-frequency stimulation. Inhibition of the AP3 pathway with brefeldin A rescues the rate of recycling, suggesting a competition between AP2 and -3 pathways, with endophilin recruiting VGLUT1 toward the faster AP2 pathway. After stimulation, however, inhibition of the AP3 pathway prevents the full recovery of VGLUT1 by endocytosis, implicating the AP3 pathway specifically in compensatory endocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

Synaptotagmin-1- and Synaptotagmin-7-Dependent Fusion Mechanisms Target Synaptic Vesicles to Kinetically Distinct Endocytic Pathways

Synaptic vesicle recycling is essential for maintaining normal synaptic function. The coupling of exocytosis and endocytosis is assumed to be Ca2+ dependent, but the exact role of Ca2+ and its key effector synaptotagmin-1 (syt1) in regulation of endocytosis is poorly understood. Here, we probed the role of syt1 in single- as well as multi-vesicle endocytic events using high-resolution optical r...

متن کامل

The endocytic machinery in nerve terminals surrounds sites of exocytosis

In most models of endocytosis, the endocytic machinery is recruited from the cytoplasm by cytoplasmic tails of the plasma membrane proteins that are to be internalized. This does not appear to be true at synapses where the endocytic machinery required for synaptic vesicle recycling is localized to membrane-associated 'hot spots' [1] [2]. In Drosophila neuromuscular junctions, the multi-domain p...

متن کامل

GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis

Rab guanosine triphosphatases (GTPases) control cellular trafficking pathways by regulating vesicle formation, transport, and tethering. Rab11 and its paralogs regulate multiple secretory and endocytic recycling pathways, yet the guanine nucleotide exchange factor (GEF) that activates Rab11 in most eukaryotic cells is unresolved. The large multisubunit transport protein particle (TRAPP) II comp...

متن کامل

Sorting of the vesicular GABA transporter to functional vesicle pools by an atypical dileucine-like motif.

Increasing evidence indicates that individual synaptic vesicle proteins may use different signals, endocytic adaptors, and trafficking pathways for sorting to distinct pools of synaptic vesicles. Here, we report the identification of a unique amino acid motif in the vesicular GABA transporter (VGAT) that controls its synaptic localization and activity-dependent recycling. Mutational analysis of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2006